a2 United States Patent

Zhai

US009459915B2

(10) Patent No.:

45) Date of Patent:

US 9,459,915 B2
*QOct. 4, 2016

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

EXECUTION OF SOFTWARE USING A
VIRTUAL PROCESSOR TIME COUNTER
AND A SCALING FACTOR

Applicant: Intel Corporation, Santa Clara, CA

(US)

Inventor: Gang Zhai, Shanghai (CN)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 136 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/320,939

Filed: Jul. 1, 2014

Prior Publication Data

US 2014/0317633 Al Oct. 23, 2014

Related U.S. Application Data

Continuation of application No. 12/570,158, filed on
Sep. 30, 2009, now Pat. No. 8,806,496.

Int. CL.

GO6F 9/48 (2006.01)

GO6F 1/12 (2006.01)

GO6F 9/50 (2006.01)

GO6F 9/455 (2006.01)

U.S. CL

CPC ... GO6F 9/4881 (2013.01); GO6F 1/12

(2013.01); GO6F 9/4825 (2013.01); GO6F
9/5077 (2013.01); GOGF 9/45541 (2013.01);
GO6F 9/45545 (2013.01); GOGF 9/4856
(2013.01); GOGF 2009/4557 (2013.01)
Field of Classification Search
None
See application file for complete search history.

Determine Scsling Factor Belween Oid CPU
Frequency Y

(56)

7,194,556
7,490,191
7,602,874

7,681,199
7,788,664
8,020,020
8,095,929
8,127,168

8,327,357

2005/0132364
2009/0183153

2010/0077394
2010/0250230

2010/0251235
2011/0047315

2011/0055828
2011/0225591

* cited by examiner

B2
B2
B2 *

B2
Bl
B2
Bl
B2 *

B2 *

Al
Al*

Al
Al*

Al*
Al

Al
Al*

3/2007
2/2009
10/2009

3/2010
8/2010
9/2011
1/2012
2/2012

12/2012

6/2005
7/2009

3/2010
9/2010

9/2010
2/2011

3/2011
9/2011

References Cited

U.S. PATENT DOCUMENTS

Rajagopal et al.
Illikkal et al.
Hilgendorf GO4F 10/04

375/354

Gootherts et al.
Janakiraman et al.

Serebrin
Ji et al.
Maedaccove.. GO6F 1/3203
713/300
Amsden GOG6F 9/45533
718/1
Tewari et al.
Wang ... GO6F 9/4881
718/1
Wang et al.
Ganguly GOGF 9/45558
703/26
Ganguly GOGF 9/45558
718/1
De Dinechin et al.
Amsden
Wadaooooenn. GOG6F 9/45533
718/103

Primary Examiner — Abu Ghaffari
(74) Attorney, Agent, or Firm — Trop, Pruner & Hu, P.C.

&7

ABSTRACT

In one embodiment, a processor includes at least one execu-
tion unit to execute instructions, and a logic to obtain a value
of a virtual time counter based on a scale factor that
corresponds to a ratio of a first frequency of a first platform
to a second frequency of a second platform that includes the
processor. The processor is to execute guest software that is
migrated from the first platform to the second platform using
the value of the virtual time counter obtained by the logic.
Other embodiments are described and claimed.

ey And New GPU Freuénc

Usa Virtsal Tima Courlar
Based On New Physical Time:
‘Counter And Scaling Facor

18 Claims, 4 Drawing Sheets

194

US 9,459,915 B2

Sheet 1 of 4

g{]

N\

£

N\

iy

N

UG

uswianay

U

UOANDeXY

HUN
PUTZ U0

uy
Ll

Oct. 4, 2016

o} ddy 1s8n9)

vo1 ddy 1seng

GGl 0G1 sinmonig OF L 8NSnag
JOIINOD) Ul abeicig e¥i{Vlelg
Oc | Josssnald
01 AICWB
Q L1 20BMDIBH LUIOHRIA 2l8Y
OF L IAIINA
09T WA 0GT WA

291 S0 1sengy 761 S0 s8ng

5G1 ddy 1seng

$G 1 ddy 188n6)

¢ Wicgeld

U.S. Patent

s

001

174

U.S. Patent Oct. 4, 2016 Sheet 2 of 4 US 9,459,915 B2

200
Create a Guest On Second Platform
210
N Is Guest
Migrated From Another
Platform? 220
Y
Determine Scaling Factor Between Old CPU
Frequency And New CPU Frequency \
230
Execute Guest On Second Platform N
240
Guest Read Time Counter N
250
N . .
Is Scaling Factor Configured?
260
Read Physical Use Virtual Time Counter
Time Counter Based On New Physical Time N
< Counter And Scaling Factor 280
270
Guest Receives Count
And Continues Execution N\
290

FIG. 2

US 9,459,915 B2

Sheet 3 of 4

Oct. 4, 2016

U.S. Patent

ove
AN

0ce

€ Old

nuN Jope 9|eog

Jajuno)d awi| [enja

ole
AN

0€e

Jajyunoo awi] |eaisAyd

-
™

US 9,459,915 B2

Sheet 4 of 4

Oct. 4, 2016

U.S. Patent

0G6S

ayoen

A

ovs

14

JE

02s
N

v

g0y

[z5]

S)HUM UoiNoSXg

9|14 Je)siboy

SIS
AN

0ls

\

suibug
18pI0-4O-INO

sjun pu3g uol4
805
N

Japooa(
uononnsu|

909
~

605 OUOED
// uononJisuj

NAIN

pepuelxg

Ges

aid Jeysiboy

/

0es

7058

nwn
yore

o
o
o)

US 9,459,915 B2

1
EXECUTION OF SOFTWARE USING A
VIRTUAL PROCESSOR TIME COUNTER
AND A SCALING FACTOR

PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/570,158, filed Sep. 30, 2009, the contents of
which is incorporated by reference herein.

BACKGROUND

As microprocessors and computer systems advance,
greater amounts of software can be executed on a single
platform. To accommodate different software that may be
written for different platforms and operating systems (OSs),
virtualization technologies can be used. Virtualization
enables multiple OSs and various software to execute on a
single platform. Using virtualization techniques, a software
application may consider itself to be the only entity execut-
ing on a platform, although multiple applications may be
concurrently executing.

Virtualization is typically implemented by using software
(e.g., a virtual machine monitor (VMM)) to present to each
OS a virtual machine (VM) having virtual resources, includ-
ing one or more virtual processors that the OS may com-
pletely and directly control, while the VMM maintains a
system environment for implementing virtualization policies
such as sharing and/or allocating physical resources of the
system among the VMs. Each OS and other software that
runs on a VM is referred to as a guest or guest software,
while a host or host software is software such as a VMM that
runs outside of the virtualization environment.

Thus virtualization technologies allow multiple guest
software (generally, guests) to simultaneously run on a
single host or physical platform. A guest executing on a
system may see a virtual central processing unit (CPU)
which appears to the guest as a physical CPU having the
same frequency as the physical CPU. In many instances, a
guest relies on a CPU time counter for time keeping.

In various environments, when a guest is migrated from
one physical platform to another, the physical CPU of the
new platform may operate at a different frequency than the
CPU of the original platform. This causes a change in the
rate of the time counter for the physical CPU that the guest
runs on, which can create difficulties for operations of the
guest that rely on a time keeping function and can even
cause a crash.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system in accordance with
one embodiment of the present invention.

FIG. 2 is a flow diagram of a method in accordance with
one embodiment of the present invention.

FIG. 3 is a block diagram of logic to generate a virtual
time counter in accordance with one embodiment of the
present invention.

FIG. 4 is a block diagram of a processor in accordance
with one embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments may implement a scaling mechanism
between a physical time counter and a virtual time counter.
In other words, a processor such as a CPU can be configured
so that a guest does not read a physical time counter directly,

10

25

30

40

45

50

55

60

2

but instead reads a virtual time counter. In various embodi-
ments, the virtual time counter can be determined by asso-
ciating the physical counter with a configurable scale factor.
As an example, the virtual time counter can be determined
by multiplying the physical time counter by a scaling factor.
This scaling factor may be expressed as a percentage or
other coefficient value, and in one embodiment can be
defined as a ratio between old processor frequency and new
processor frequency (e.g., frequency CPU old/frequency
CPU new). Note that this scale factor may be configured
when a guest is migrated to a different type of CPU or a CPU
having a different frequency. In this way, the guest accesses
atime counter having a constant frequency across migration.

Using virtualization in accordance with an embodiment of
the present invention, after migration to a different CPU a
guest can read a virtual counter without VMM intervention.
To enable virtual counter reading, the CPU can make a
calculation in the guest context. This calculation may be
performed by reading the physical counter on behalf of the
guest OS, and then calculating the proper value (of the
virtual counter) to be provided to the guest. In this way, the
virtual counter is transparent to the guest OS, which instead
believes it has accessed the physical counter. From the
VMM point of view, the guest OS sees a virtual counter (a
logical concept).

FIG. 1 illustrates a system in accordance with one
embodiment of the present invention. Although FIG. 1
shows an embodiment of a virtualization architecture 100, it
is to be understood that embodiments may also be imple-
mented in other architectures, systems, platforms, or envi-
ronments.

In FIG. 1, a bare platform hardware 110 is present and
may correspond to any type of computer system that can
execute OS or VMM software. For example, bare platform
hardware may be that of a personal computer, mainframe
computer, portable computer, handheld device, set-top box,
server, or any other computing system. As seen in FIG. 1,
bare platform hardware 110 includes a processor 120 and a
memory 130.

Processor 120 may be any type of processor, including a
general-purpose microprocessor, such as a multi-core pro-
cessor, microcontroller, or programmable logic. Although
FIG. 1 shows only one such processor 120, bare platform
hardware 110 may include multiple processors, including
any number of multi-core processors, each with any number
of execution cores, and any number of multithreaded pro-
cessors, each with any number of threads.

As seen in the embodiment of FIG. 1, processor 120
includes a front end unit 122 that can retrieve and prepare
instructions for execution in an execution unit 124, which
may include various logic units, and a retirement unit 126 to
handle retirement of executed instructions. As further seen,
processor 120 includes a control structure 140, which may
store various status and control registers and so forth, and a
storage structure 150, which may include one or more
register files. As further seen, a time counter 155, namely a
physical time counter which may be configured to count
clock cycles is present. In one embodiment, counter 155
may be configured to receive a clock signal at an operating
frequency of the processor (i.e., fz;,) that is provided to the
various components of the processor. Bare platform hard-
ware 110 may further include at least one memory 130,
which in one embodiment may be dynamic random access
memory (DRAM). Bare platform hardware 110 may also
include any number of additional devices or connections.

US 9,459,915 B2

3

In addition to bare platform hardware 110, FIG. 1 illus-
trates a VMM 140, VMs 150 and 160, guest operating
systems 152 and 162, and guest applications 154, 155, 164,
and 165.

VMM 140 may be any software, firmware, or hardware
host installed on or accessible to bare platform hardware 110
to present VM, i.e., abstractions of bare platform hardware
110, to guests or to otherwise create and manage VMs and
implement virtualization policies. In other embodiments, a
host may be any VMM, hypervisor, OS, or other software,
firmware, or hardware capable of controlling bare platform
hardware 110. A guest may be any OS, any VMM, including
another instance of VMM 140, any hypervisor, or any
application or other software.

In the embodiment of FIG. 1, guest OS 152 and guest
applications 154 and 155 are installed on VM 150 and guest
OS 162 and guest applications 164 and 165 are installed on
VM 160. Although shown with only two VMs and two
applications per VM in the embodiment of FIG. 1, the scope
of the present invention is not limited in this regard. As
further illustrated in FIG. 1 and as described further herein
a guest can be migrated to another platform 170 via a
network link 175.

Referring now to FIG. 2, shown is a flow diagram of a
method in accordance with one embodiment of the present
invention. Method 200 may be used in the course of execut-
ing guest software that has migrated between a first platform
and a second platform. That is, after a guest is executed on
the first platform, it is migrated to the second platform. For
example, the guest may correspond to a first OS that is
executing on a first platform, which may be a server system
having a CPU that runs at a frequency of 3.0 gigahertz
(GHz), for example. During execution of the guest, a physi-
cal time counter of the CPU may be used. For example,
various counters that operate during guest OS or guest
software execution may be updated according to this physi-
cal time counter. As an example, a guest OS may read the
counter value to provide a current time. Note that this
physical time counter may be a hardware counter of the CPU
that counts processor clock cycles. Thus this physical time
counter itself may be updated based on the operating fre-
quency of the CPU. Of course, the counters can be any type
of counter and are not limited to time counters.

Then the guest is migrated to another CPU. For example,
due to load balancing or other conditions in a network or a
purchase of a new machine by a user, a guest may be
migrated from the first platform to a second platform, e.g.,
via a network link. While this platform may be typically of
the same architecture and may include substantially the
same components, in many instances there may be differ-
ences between the first and second platforms. Assume for
purposes of discussion that this second platform has a CPU
that operates at a different operating frequency, e.g., a higher
frequency of 4.0 GHz.

As seen in FIG. 2, method 200 may be used to execute the
guest on the second platform, and may begin by creating the
guest on the second platform (block 210). Various operations
to set up control structures and so forth may be performed
in creating the guest. This guest may be the guest transferred
from the first platform or in some instances it may be a guest
originally created for the second platform. At diamond 220
it may be determined whether the guest is migrated from
another platform. If not, control passes directly to block 240,
where the guest may be executed on the second platform.
Otherwise, if the guest has been migrated from another
platform, control passes to block 230 where a scaling factor
may be determined. More specifically, the scaling factor

10

15

20

25

30

40

45

55

4

may be calculated as a ratio between the old CPU frequency
and the new CPU frequency. Understand that during the
migration, various information associated with the guest
including its state and operating parameters of the original
platform, including frequency of the original CPU, may be
provided from the first platform to the second platform.
Accordingly, the information passed during migration may
be used to determine the scaling factor. This scaling factor
may be used in generating a virtual time counter for use by
the guest in the second platform so that various counting
operations performed by the guest may operate correctly in
the second platform.

Thus as seen in FIG. 2, control passes to block 240 where
the guest may execute on the second platform. During
execution of the guest, the guest may request to read a time
counter (block 250). For example, a guest instruction may be
to read a time counter. Accordingly, control passes to dia-
mond 260 where it may be determined whether the scaling
factor is configured, namely if guest has been migrated, the
scaling factor is configured, otherwise it is not. If the guest
is executing on its original platform, control passes to block
270, where the physical time counter may be read. Accord-
ingly, the value of the physical time counter of the CPU is
obtained and provided to the guest, which continues its
execution (block 290). If instead at diamond 260 it is
determined that the scaling factor is configured, i.e., the
guest has been migrated from another platform, control
passes to block 280. Here, instead of directly using a
physical time counter of the CPU during execution, embodi-
ments may instead use a virtual time counter that is based on
the scaling factor and the physical time counter of the new
CPU (block 280). As one example, this virtual counter may
be determined as follows:

[EQ. 1]

where f,;, is the clock frequency of the CPU of the first
platform, f-,,. is the clock frequency of the CPU of the
second platform (together the ratio represents the scaling
factor), and PC_p;, is the physical time counter of the CPU
of the second platform. Control then passes to block 290,
where the virtual time counter value may be provided to the
guest. While shown with this particular implementation in
the embodiment of FIG. 2, understand that the scope of the
present invention is not limited in this regard. For example,
while the migration is described as between platforms,
implementations can be used in migrating software between
two heterogeneous processors of a system (e.g., operating at
different frequencies).

Some embodiments may be implemented in logic of a
processor. Referring now to FIG. 3, shown is a block
diagram of logic to generate a virtual time counter in
accordance with one embodiment of the present invention.
As shown in FIG. 3, logic 300 may include a physical time
counter 310. This time counter may be a time counter of a
processor that counts clock cycles of the processor, e.g.,
according to the operating speed of the processor. While
shown as being part of logic 300, understand that in other
implementations, this physical time counter may be located
elsewhere and instead a time counter signal output by the
counter may be sent to logic 300.

Logic 300 may further include a multiplier 330 that
multiplies the value of this physical time counter by a scale
factor received from a scale factor unit 320. In various
embodiments, the scale factor may be a ratio that is deter-
mined based on the operating frequency of an original CPU
on which a guest is executed and an operating frequency of
the current CPU, and which may be determined in scale

Fervifert)¥PCepun

US 9,459,915 B2

5

factor unit 320. Scale factor unit 320 may further include a
storage such as a register to store this scale factor so that it
need only calculate the scale factor a single time for a given
migration. Accordingly, the output of multiplier 330 may be
avirtual time counter 340. This virtual time counter 340 may
thus provide an output to a guest for use in operation of the
guest. In this way, the guest sees a virtual time counter as a
physical time counter. While shown with this particular
implementation in the embodiment of FIG. 3, the scope of
the present invention is not limited in this regard. For
example, in some embodiments, the scale factor unit can be
implemented in microcode for performing a read time
counter intervention, VMM code or so forth. In these
implementations, the logic may thus receive and use the
scaling factor in calculating the virtual counter value.

Using embodiments of the present invention, limitations
for guest migration (such as requiring the same type CPU)
can be eliminated, and a guest can smoothly migrate to a
latest CPU with a higher frequency. As such, a consumer can
frequently upgrade CPUs for a virtualization solution with-
out compromising operation of virtualization software. Still
further, embodiments avoid the need for a guest to trap into
a host any time a guest needs to read a time counter, which
can be very inefficient as a context switch between guest and
host is expensive and a guest may often need to read a
counter.

Referring now to FIG. 4, shown is a block diagram of a
processor in accordance with one embodiment of the present
invention. As shown in FIG. 4, processor 500 may be a
multi-stage pipelined out-of-order processor. Processor 500
is shown with a relatively simplified view in FIG. 4 to
illustrate various features used in connection with virtual
time scaling in accordance with an embodiment of the
present invention.

As shown in FIG. 4, processor 500 includes front end
units 510, which may be used to fetch instructions to be
executed and prepare them for use later in the processor. For
example, front end units 510 may include a fetch unit 504,
an instruction cache 506, and an instruction decoder 508. In
some implementations, front end units 510 may further
include a trace cache, along with microcode storage as well
as a micro-operation storage. Fetch unit 504 may fetch
macro-instructions, e.g., from memory or instruction cache
506, and feed them to instruction decoder 508 to decode
them into primitives, i.e., micro-operations for execution by
the processor. Front end units 510 further includes a memory
management unit (MMU) 509 to handle translation of
virtual addresses to physical addresses.

Coupled between front end units 510 and execution units
520 is an out-of-order (OOO) engine 515 that may be used
to receive the micro-instructions and prepare them for
execution. More specifically OOO engine 515 may include
various buffers to re-order micro-instruction flow and allo-
cate various resources needed for execution, as well as to
provide renaming of logical registers onto storage locations
within various register files such as register file 530 and
extended register file 535. Register file 530 may include
separate register files for integer and floating point opera-
tions. Extended register file 535 may provide storage for
vector-sized units, e.g., 256 or 512 bits per register.

Various resources may be present in execution units 520,
including, for example, various integer, floating point, and
single instruction multiple data (SIMD) logic units, among
other specialized hardware. In addition, a logic 525, which
may be a virtual time logic such as shown in FIG. 3, may be
present. Results may be provided to retirement logic, namely
a reorder buffer (ROB) 540. More specifically, ROB 540

10

15

20

25

30

35

40

45

50

55

60

65

6

may include various arrays and logic to receive information
associated with instructions that are executed. This infor-
mation is then examined by ROB 540 to determine whether
the instructions can be validly retired and result data com-
mitted to the architectural state of the processor, or whether
one or more exceptions occurred that prevent a proper
retirement of the instructions. Of course, ROB 540 may
handle other operations associated with retirement.

As shown in FIG. 4, ROB 540 is coupled to a cache 550
which, in one embodiment may be a low level cache (e.g.,
an L1 cache) although the scope of the present invention is
not limited in this regard. Also, execution units 520 can be
directly coupled to cache 550. From cache 550, data com-
munication may occur with higher level caches, system
memory and so forth. While shown with this high level in
the embodiment of FIG. 4, understand the scope of the
present invention is not limited in this regard.

Embodiments may be implemented in code and may be
stored on a storage medium having stored thereon instruc-
tions which can be used to program a system to perform the
instructions. The storage medium may include, but is not
limited to, any type of disk including floppy disks, optical
disks, optical disks, solid state drives (SSDs), compact disk
read-only memories (CD-ROMs), compact disk rewritables
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), magnetic or optical
cards, or any other type of media suitable for storing
electronic instructions.

While the present invention has been described with
respect to a limited number of embodiments, those skilled in
the art will appreciate numerous modifications and varia-
tions therefrom. It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.

What is claimed is:
1. A processor comprising:
at least one execution unit to execute instructions; and
a logic to determine a value of a virtual time counter based
on a scale factor that corresponds to a ratio of a first
frequency of a first processor of a first computing
platform to a second frequency of the processor of a
second computing platform responsive to migration of
guest software, wherein the logic is to calculate the
scale factor a single time and to store the scale factor in
a storage, the first computing platform coupled to the
second computing platform via a network link;

wherein the processor is to execute the guest software that
is migrated from the first computing platform to the
second computing platform using the value of the
virtual time counter determined by the logic.

2. The processor of claim 1, further comprising the
storage to store the scale factor, wherein the logic is to
provide the value of the virtual time counter via use of the
scale factor retrieved from the storage responsive to a
request to read a time counter during execution of the guest
software on the second computing platform.

3. The processor of claim 1, wherein the processor further
includes a physical counter that is to count at the second
frequency.

US 9,459,915 B2

7

4. The processor of claim 3, wherein the logic includes a
multiplier to determine the value of the virtual time counter
by multiplication of the scale factor and the value of the
physical counter.

5. The processor of claim 3, wherein the physical counter
comprises a hardware counter that counts processor cycles
of the at least one execution unit.

6. The processor of claim 1, wherein the guest software is
to be migrated from the first computing platform to the
second computing platform via the network link.

7. The processor of claim 1, wherein the logic is to output
the value of the virtual time counter responsive to execution
by the at least one execution unit of an instruction that
includes a request to read a time counter.

8. A non-transitory computer readable medium storing
executable instructions that when executed by a machine,
cause the machine to:

determine a single time, during execution of a guest

software at a second computing platform using a virtual
time logic of a second processor of the second com-
puting platform, a scale factor between a first frequency
of a first processor of a first computing platform and a
second frequency of the second processor responsive to
migration of the guest software from the first comput-
ing platform to the second computing platform, the
scale factor corresponding to a ratio of the first fre-
quency of the first processor to the second frequency of
the second processor, and store the scale factor in a
storage; and

execute the guest software on the second computing

platform using a virtual time counter that is determined
based on a physical time counter of the second proces-
sor and on the scale factor.

9. The non-transitory computer readable medium of claim
8, wherein for each of a plurality of values of the physical
time counter, a corresponding value of the virtual time
counter is determined by multiplication of one of the plu-
rality of values of the physical time counter by the scale
factor.

10. The non-transitory computer readable medium of
claim 8, wherein the second processor is coupled to the first
processor via a network coupling.

11. The non-transitory computer readable medium of
claim 8, wherein the second frequency is different from the
first frequency.

10

15

20

25

30

35

40

8

12. The non-transitory computer readable medium of
claim 8, further comprising instructions to provide a value of
the virtual time counter responsive to a request to read a time
counter during execution of the guest software on the second
computing platform.

13. The non-transitory computer readable medium of
claim 8, further comprising instructions to determine a value
of the virtual time counter using the stored scale factor in
response to each request to read a time counter during the
execution of the guest software on the second computing
platform.

14. A processor comprising:

at least one execution unit to execute instructions of a
guest software that is migrated to a first computing
platform including the processor from a second com-
puting platform;

a scale factor logic to generate a single time responsive
to the guest software migration during the guest
software execution a scale factor corresponding to a
ratio of a second frequency of a second processor of
the second computing platform to a first frequency
associated with the at least one execution unit and
store the scale factor in a storage; and

a logic to multiply the scale factor by a value of a first
physical counter that operates at the first frequency
to obtain a value of a virtual time counter;

wherein the at least one execution unit is to execute an
instruction of the guest software using a correspond-
ing value of the virtual time counter obtained by the
logic.
15. The processor of claim 14, wherein the processor is
coupled to the second processor via a network link.

16. The processor of claim 14, wherein the scale factor
logic is implemented in software.

17. The processor of claim 14, further including the
storage to store the scale factor.

18. The processor of claim 17, wherein the logic is to
retrieve the scale factor from the storage and to multiply the
retrieved scale factor by the value of the first physical
counter responsive to a request to read a time counter during
execution of the guest software.

#* #* #* #* #*

